CS24 — Spring 2015 — CS Scholars Seminar - Submission guidelines 1

1 Submitting your assignment

The purpose of removing a friendly submit script from the CS24 assignments is to get you familiar
with the git (and by extension version-control) development cycle. As discussed in class, we will
be following the Feature Development Workflow

This type of development keeps a project’s history on its main, or master branch, while new
features are added on separate branches. The main idea behind this design is to maintain the
master with bugless code, and develop in isolation on feature branches.

Let’s take this into practice. I am expecting you to find and execute the instructions to successfully
clone the repos onto your (Local) computers.

1.1 Feature branching

For either assignment, you will be creating a feature branch, copying and modifying the template
assignment, then merging back to the master branch.

1. Navigate into the t ime—capsule directory
2. Create a branch

(a) git checkout -b myfeature master (shorthand), or:
(b) git branch myfeature; git checkout myfeature

3. Configure your assignment (§2)
4. Merge your branch

(a) Either submit a pull request : Through the online bitbucket interface, submit a pull
request. This will ask everyone on the team to review the changes you made to the
code before it gets merged onto the master. This prevents you from accidentally adding
bad code to the master, or

(b) git checkout master; git merge myfeature

i. Note that you can use checkout to switch between branches and spy on your
classmates’ branch.

Remember, to figure out where you are, you can always run git status (Figure|l).

'"https://www.atlassian.com/git/tutorials/comparing-workflows/
feature-branch-workflow


https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

CS24 — Spring 2015 — CS Scholars Seminar - Submission guidelines 2

Cesar—Torres:timé—capsule cearto$ git status
On branch master
Your branch is up-to-date with 'origin/master’.

Untracked files:
(use "git add <file>..." to include in what will be committed)

views/git.html

nothing added to commit but untracked files present (use "git add" to track)
Cesar-Torres:time-capsule cearto$

Figure 1: git status is your friend. Use it often. Note that the first line tells you the branch you are
on, how old it is (e.g. 2 commits behind master [since someone else has merge their branch after
your started yours), the things that are on your stage, and off your stage (untracked).

2 Configuring your recipe

Recipes are currently composed of three elements.

1. webpage in \views\topic\recipe.html

(a) Create the directories using mkdi r if they don’t already exist
(b) To edit: Open the html file using a text editor. Replace relevant text.

(c) To view: Open your terminal, navigate to the root directory of the repo of interest.
Run python -m SimpleHTTPServer. This starts a server on port 8000 of your
computer. Point your browser to localhost:8000. Click on views, ..., down to your
recipe’s html page to view your changes. The server automatically loads the most
recent code. Just refresh the browser any time you make an edit to the document.

2. .java files

(a) Don’t commit your .class files! Just your .java is
(b) Livesin \code\recipe

(c) In your html page, find the anchor tag a that links to the code. Update the href
property with the new path: \code\recipes.

3. your folder

(a) Livesin \partners\name

(b) Symbolically link your html pages to this folder. This “copies” the html page to your
personal folder, without actually copying the file. This is what happens under-the-hood
when you create shortcuts on your desktop. If you make a change to your html page,
the ”copy” will also update.
syntax: 1n —s pathtofiletosymlink dst
if you are in the partners directory, you can just run 1n -—s pathtofilesymlink . where
the period (.) refers to the current directory.



CS24 — Spring 2015 — CS Scholars Seminar - Submission guidelines 3

3 Configuring your Q/A

This follows the same pattern except for some path names:

1. webpage in \views\week\topic.html
2. pdf files

(a) Lives in \views\week

(b) Generate the pdf of your questions using LaTeX, and place the file in the above location.
Don’t commit build files! (no .out, .syntex, etc.., only .pdf) Keep the answers to the
questions in a separate file. You’ll submit this in a couple of weeks.

(c) In your html page, find the anchor tag a that links to the questions pdf. Update the
href property with the new path: \views\week\questions.pdf.

3. your folder

(a) Lives in \groups\name

(b) Symbolically link your html pages to this folder.



	Submitting your assignment
	Feature branching

	Configuring your recipe
	Configuring your Q/A

